|
In theoretical physics, quantum chromodynamics (QCD) is the theory of strong interactions, a fundamental force describing the interactions between quarks and gluons which make up hadrons such as the proton, neutron and pion. QCD is a type of quantum field theory called a non-abelian gauge theory with symmetry group SU(3). The QCD analog of electric charge is a property called ''color''. Gluons are the force carrier of the theory, like photons are for the electromagnetic force in quantum electrodynamics. The theory is an important part of the Standard Model of particle physics. A large body of experimental evidence for QCD has been gathered over the years. QCD enjoys two peculiar properties: *Confinement, which means that the force between quarks does not diminish as they are separated. Because of this, when you do separate a quark from other quarks, the energy in the gluon field is enough to create another quark pair; they are thus forever bound into hadrons such as the proton and the neutron or the pion and kaon. Although analytically unproven, confinement is widely believed to be true because it explains the consistent failure of free quark searches, and it is easy to demonstrate in lattice QCD. *Asymptotic freedom, which means that in very high-energy reactions, quarks and gluons interact very weakly creating a quark–gluon plasma. This prediction of QCD was first discovered in the early 1970s by David Politzer and by Frank Wilczek and David Gross. For this work they were awarded the 2004 Nobel Prize in Physics. The phase transition temperature between these two properties has been measured by the ALICE experiment to be well above 160 MeV. Below this temperature, confinement is dominant, while above it, asymptotic freedom becomes dominant. ==Terminology== The word ''quark'' was coined by American physicist Murray Gell-Mann (b. 1929) in its present sense. It originally comes from the phrase "Three quarks for Muster Mark" in ''Finnegans Wake'' by James Joyce. On June 27, 1978, Gell-Mann wrote a private letter to the editor of the ''Oxford English Dictionary'', in which he related that he had been influenced by Joyce's words: "The allusion to three quarks seemed perfect." (Originally, only three quarks had been discovered.) Gell-Mann, however, wanted to pronounce the word to rhyme with "fork" rather than with "park", as Joyce seemed to indicate by rhyming words in the vicinity such as ''Mark''. Gell-Mann got around that "by supposing that one ingredient of the line 'Three quarks for Muster Mark' was a cry of 'Three quarts for Mister ...' heard in H.C. Earwicker's pub", a plausible suggestion given the complex punning in Joyce's novel.〔 〕 The three kinds of charge in QCD (as opposed to one in quantum electrodynamics or QED) are usually referred to as "color charge" by loose analogy to the three kinds of color (red, green and blue) perceived by humans. Other than this nomenclature, the quantum parameter "color" is completely unrelated to the everyday, familiar phenomenon of color. Since the theory of electric charge is dubbed "electrodynamics", the Greek word "chroma" Χρώμα (meaning color) is applied to the theory of color charge, "chromodynamics". 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Quantum chromodynamics」の詳細全文を読む スポンサード リンク
|